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Why Interested in Combinatorial Designs?
Hadamard matrices and Plotkin arrays

Applications of Combinatorial Designs
1 Coding Theory where they give error-correcting codes that

correct the maximum number of errors. A Hadamard code
(equivalent to a first-order Reed Muller code) was used during
the 1971 Mariner 9 mission to correct the error in picture
transmission.

2 Telecommunications where they generate sequences used in
digital communications.

3 Optics for the improvement of the quality and resolution of
image scanners.

4 Cryptography for Military Science where they generate
private-key cryptosystems resistent to most common
cryptographic attacks. (this talk)
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Private-Key Ciphers
based on Combinatorial Designs

Motivation

The algorithms for encryption and decryption (in Combinatorial
Designs) are of reasonable length

Exploit the mathematical structure of the designs to harvest
cryptographic design principles

Similarities
Hill cipher, i.e. using the incidence matrix of a combinatorial
design for encryption and decryption

Block ciphers, i.e. Blowfish, 3DES

Design Goals
1 Require the key be shared only once

2 Use a relatively small key size

3 Computationally fast

4 Resistance to cryptographic attacks

5 / 26



CAIAF2011

D. E. Simos

Private-Key
Cryptosystems

Motivation

Cryptographic
Algorithms

Encryption
Schemes

Cryptanalysis

Conclusion

Private-Key Ciphers
based on Combinatorial Designs

Motivation

The algorithms for encryption and decryption (in Combinatorial
Designs) are of reasonable length

Exploit the mathematical structure of the designs to harvest
cryptographic design principles

Similarities
Hill cipher, i.e. using the incidence matrix of a combinatorial
design for encryption and decryption

Block ciphers, i.e. Blowfish, 3DES

Design Goals
1 Require the key be shared only once

2 Use a relatively small key size

3 Computationally fast

4 Resistance to cryptographic attacks

5 / 26



CAIAF2011

D. E. Simos

Private-Key
Cryptosystems

Motivation

Cryptographic
Algorithms

Encryption
Schemes

Cryptanalysis

Conclusion

Private-Key Ciphers
based on Combinatorial Designs

Motivation

The algorithms for encryption and decryption (in Combinatorial
Designs) are of reasonable length

Exploit the mathematical structure of the designs to harvest
cryptographic design principles

Similarities
Hill cipher, i.e. using the incidence matrix of a combinatorial
design for encryption and decryption

Block ciphers, i.e. Blowfish, 3DES

Design Goals
1 Require the key be shared only once

2 Use a relatively small key size

3 Computationally fast

4 Resistance to cryptographic attacks
5 / 26



CAIAF2011

D. E. Simos

Private-Key
Cryptosystems

Motivation

Cryptographic
Algorithms

Encryption
Schemes

Cryptanalysis

Conclusion

Hadamard Matrices

Definition
A square n× n matrix H with elements ±1 that satisfies
HHT = nIn is called a Hadamard matrix of order n

Notation: Hn

Necessary Condition for the Existence of an Hn

The order of a Hadamard matrix is 1, 2, or n ≡ (0 mod 4)

Equivalence of Hadamard Matrices

Two Hadamard matrices are equivalent if one can be transformed
into the other by a series of row or column:

permutations

negations
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Plotkin arrays

Generalization of Hadamard matrices
Consider the entries of an Hn replaced with “symbolic” variables
preserving the orthogonality property

Plotkin array of Order 8 and Type (1, 1, 1, 1, 1, 1, 1, 1)

P =



A B C D E F G H
−B A D −C F −E −H G
−C −D A B G H −E −F
−D C −B A H −G F −E
−E −F −G −H A B C D
−F E −H G −B A −D C
−G H E −F −C D A −B
−H −G F E −D −C B A


PPT = fI8 whereas f = A2 + B2 + . . . + H2
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Encryption Algorithm

Design of the Algorithm
1 Message: Assume a plaintext (msg) with n letters represented

by a vector of length n (i.e. ASCII code)

2 Encryption Matrix: A of order n× n, with entries {±1} where
the matrix A satisfies AAT = kIn for some constant k ∈ IN

Algorithm 1 Encryption Algorithm

function EncrAlg(msg)
Require: msg in ASCII code . Encode a sample plaintext, msg

Select(A, d) . Choose appropriate A and d
k ← (A, d) . Form private key k
Transmit(k) . Transmit securely the private key
m̄← Convert(msg) . Convert original msg
c̄← m̄A + dēn . Encrypted msg is c̄
return (Transmit(c̄))

end function
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Decryption Algorithm

Theorem (Koukouvinos and Simos, 2011)

The encrypted message c̄ which is transmitted with respect to the
encryption algorithm is decrypted uniquely as w̄ = 1/k(c̄− dēn)AT

and w̄ ≡ m̄.

Algorithm 2 Decryption Algorithm

function DecrAlg(c̄)
Require: given ciphertext c̄ . Decode a given ciphertext

Receive(A, d) . Receive the securely transmitted private key
k ← (A, d) . Set private key k
m̄← 1/k(c̄− dēn)AT . Decrypt ciphertext c̄
msg ← Convert(m̄) . Original plaintext is msg
return (msg)

end function
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Encryption Scheme

Definition (Boyd and Mathuria, 2003)

An encryption scheme consists of three sets; a key set K, a message
set M , and a ciphertext set C together with the following three
algorithms.

1 A key generation algorithm

2 An encryption algorithm

3 A decryption function

Private Key

The pair (A, d)

We can refer to the private key using only the encryption matrix
A since d is of size O(1)

10 / 26



CAIAF2011

D. E. Simos

Private-Key
Cryptosystems

Motivation

Cryptographic
Algorithms

Encryption
Schemes

Cryptanalysis

Conclusion

Encryption Scheme

Definition (Boyd and Mathuria, 2003)

An encryption scheme consists of three sets; a key set K, a message
set M , and a ciphertext set C together with the following three
algorithms.

1 A key generation algorithm

2 An encryption algorithm

3 A decryption function

Private Key

The pair (A, d)

We can refer to the private key using only the encryption matrix
A since d is of size O(1)

10 / 26



CAIAF2011

D. E. Simos

Private-Key
Cryptosystems

Motivation

Cryptographic
Algorithms

Encryption
Schemes

Cryptanalysis

Conclusion

Ciphers from Hadamard matrices

Hadamard Cipher (Koukouvinos and Simos, 2011)

Encryption matrix: The transpose of an Hadamard matrix of
order n, HT

n

Key k: The Hadamard matrix, Hn, which consists of n× n bits

Size of the key: O(n2)

Encryption-Decryption: valid using the presented algorithms
since HnH

T
n = nIn (For any selection of two distinct

row/columns of a Hadamard matrix the inner product of the
row/columns is zero)

Properties of the Hadamard Cipher

Private-key (symmetric) block cipher

The use of two inequivalent Hadamard matrices will result in
two different ciphertexts
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Reduce the Size Complexity of the Private Key
Special Constructions for Hadamard matrices

Hadamard matrices with one Circulant Core
1 A Hadamard matrix of order n = p + 1 which can be written as

1 1 · · · 1
1

.

.

. C
1

or

1

.

.

. C
1
1 −1 · · · − 1

where C = (cij) is a circulant matrix of order p, is said to have
one circulant core

2 Existence: Infinite families i.e. Paley, (1933) Stanton, Sprott
and Whiteman, (1958, 1962) Marshall Hall Jr., (1956)

Hadamard Core Cipher

Key k: The binary vector Ac = [a1, a2, . . . , ap] which denotes
the first row of the circulant matrix C and consist of of p bits

Size of the key: O(n), since it consists of p = n− 1 bits

Encryption-Decryption: as before using the Hadamard matrix
n = p + 1 as an encryption matrix
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Add Randomness in the Encryption Process
Schemes from Plotkin arrays

Plotkin Cipher (Koukouvinos and Simos, AMIS, 2011)

Encryption: Divide a message m of arbitrary length into blocks
m1, . . . ,mq of length 4 (padding the last block with zeros if
necessary)

Randomness: Random vectors g1, . . . , gq of length 4 are
constructed using pseudorandom generators

Encryption matrix: The Plotkin array of order 8 and type
(1, 1, 1, 1, 1, 1, 1, 1), denoted by P , where
PPT = (A2 + B2 + . . . + H2)I8

Encryption process: The matrix P is applied successively to
mi ⊕ gi

Ciphertext: c = P (m1 ⊕ g1)⊕ . . .⊕ P (mq ⊕ gq)

Decryption: Divide c into blocks c1, . . . , cq of size 8 and
compute PT ci/f

Key k: The chosen entries A,B, . . . ,H of P ; (integer numbers)
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Iterated Block Ciphers
using Kronecker Product

Kronecker Hadamard Core Cipher
Encryption matrix: The Kronecker product
⊗k

i=1Hi = H1 ⊗H2 ⊗ . . .⊗Hk of Hi Hadamard matrices with
one circulant core of orders ni for i = 1, . . . , k

Key k: The concatenation ⊕k
i=1Aci of private keys

Aci = [a1i , a2i , . . . , api
], which consist of

∑k
i=1 pi bits

Size of the encryption matrix: O(nk), n = maxi{ni},∏k
i=1 ni ≤

∏k
i=1 n = nk

Size of the key: O(n),
∑k

i=1(ni− 1) ≤
∑k

i=1(n)− k = k(n− 1)

Approximation of a k-round Feistel cipher (DES, 3DES,
Blowfish, FEAL, LOKI97)

Kronecker Plotkin Ciphers
Analogue constructions

The Kronecker product of orthogonal matrices is an orthogonal
matrix
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Electronic Codebook Mode (ECB)

Repetition of the encryption process when the plaintext has
more than n letters

Disadvantage of ECB: If two plaintext blocks are the same, then
the corresponding ciphertext blocks will be identical, and that is
visible to the attacker

Solution I: Choose Ai, i = 1, . . . , k to be Af 6= Ag for
i ≤ f, g ≤ k with f 6= g for Kronecker based ciphers

Solution II: Choose Ai encryption matrices of orders∑k
i=1 ni = n, where n is the size of the plaintext; Then the

encryption process does not result in any repetition blocks
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Encryption with Hadamard Ciphers in Practice

Encrypting a Message with ECB Mode
1 C = Encrypt(’HMAHMA’,16) “Encrypt with H16”

2 C = kaia?gcakaia?gca “Identical ciphertext blocks”

3 C = Encrypt(’HMAHMA’,24) “Encrypt with H24”

4 C = ftaberhzia?wsteinbdarsfa “No repetition blocks”

Diffusion Principle in Block Ciphers

If one bit of the plaintext is changed, then the ciphertext should
change in 2 to 5 bits in an “unpredictable” manner

Strict Avalanche Criterion (Webster and Tavares, 1985)

Diffusion in Hadamard Ciphers
1 C1 = Encrypt(’1000 0001’,8) ⇒ C1 = 1100 1100

2 C2 = Encrypt(’0000 0001’,8) ⇒ C2 = 1000 1000

3 HammingDistance(C1, C2) = 2
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Simulation of Brute-Force Attacks
for the Kronecker Plotkin Cipher

Frequency Analysis

Simulation of a brute-force attack method

Calculate frequency of occurences of every ASCII symbol

The Simulation Procedure
1 Used a sample plaintext of 23 characters

2 Encoded the plaintext by approximating the entry size for the
Plotkin arrays and approximate size of the noise vector

3 Used Plotkin arrays of orders 4, 4, 8 to compute the encryption
matrix of order 128(= 4 · 4 · 8) in Kronecker Plotkin cipher

4 Decoded the ciphertext using every key combination of key entry
value equal to ±1

5 Converted the decoded ciphertext to ASCII values and counted
the frequency of each value that appears in the resulting
combinations
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Cryptanalysis of Brute-Force Attacks
for the Kronecker Plotkin Cipher

Experimental Results (Koukouvinos and Simos, AMIS, 2011)

1 A brute force attack is not a feasible way of defeating the cipher

2 A brute force attack does not result in all possible plaintext
messages (in contrast to OTP)

3 The size of the entries of the noise vector played a significant
role in the decryption process

key noise ASCII values occurrences × 105

size size 0 − 25 26 − 50 51 − 75 76 − 100 101 − 127
10-14 128 25 5 5 7 8
10-14 1024 10 12 8 6 14
30-34 128 120 30 40 30 50
30-34 1024 65 90 45 50 40
50-54 128 310 50 70 30 40
50-54 1024 110 100 90 80 120

Key Length Recommendation

Kronecker Plotkin cipher is considered secure using a key of 128 bits
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Cryptanalysis of Known-Plaintext Attacks
for Hadamard & Plotkin Ciphers

Known-Plaintext Attack

A known-plaintext attack is one where the adversary has a quantity of plaintext and

corresponding ciphertext

(1) We need to recover the i-th column of the n × n encryption matrix A = Hn or
A = P , A(i) = (a1,i, a2,i, . . . , an,i), without knowing the private key by solving
the following n-linear systems, for i = 1, . . . , n:

m
1
1a1,i + m

1
2a2,i + · · · + m

1
nan,i = c

1
i

m
2
1a1,i + m

2
2a2,i + · · · + m

2
nan,i = c

2
i

.

.

.
.
.
.

m
n
1 a1,i + m

n
2 a2,i + · · · + m

n
nan,i = c

n
i

(2) Denote the previous system as MA(i) = C(i), where C(i) = (c1i , c2i , . . . , cni )

Result of the Cryptanalysis: Partial Secure

Hadamard & Plotkin Ciphers are secure against known-plaintext attacks under the

assumption that the adversary has knowledge of less than n messages of length n of

the plaintext and the corresponding ciphertext

One can find the encryption matrix A, if the matrix M is not singular
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Cryptanalysis of Chosen-Plaintext Attacks
for Hadamard & Plotkin Ciphers

Chosen-Plaintext Attack
A chosen-plaintext attack is one where the adversary chooses
plaintext and is then given the corresponding ciphertext

Extra advantage of the adversary: knowledge of the encryption
mechanism

Breaking the system: solve n linear systems, MA(i) = C(i) for
i = 1, . . . , n

Outcome: No further information is revealed with respect to a
known-plaintext attack

Result of the Cryptanalysis: Partial Secure

Hadamard and Plotkin ciphers are secure against chosen-plaintext
attacks, since the ciphers are secure against known-plaintext attacks
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Cryptanalysis of Known & Chosen-Plaintext Attacks
for the Kronecker Hadamard & Plotkin Ciphers

How Secure is n in Practice?
For a plaintext of n = 64 bits an attacker which can deduce
64 = 26 messages of the same length can break the ciphers

Totally impractical!

Solution
1 Kronecker Hadamard and Plotkin ciphers

2 Use 16 rounds of encryption; 16 Hadamard matrices or Plotkin
arrays of order 16

3 Size of encryption matrix is 24
16

= 264; key is 16 · 15 = 240 bits

Comparison with the Security of DES

1 To break DES differential cryptanalysis requires 247 chosen
plaintexts (Bilham and Shamir, 1980)

2 Linear cryptanalysis needs 243 known plaintexts to achieve
similar results (Matsui, 1993)
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Cryptanalysis of Ciphertext-only Attacks
for Hadamard and Plotkin Ciphers

Ciphertext-only Attack

A ciphertext-only attack is one where the adversary tries to deduce
the decryption key or plaintext by only observing ciphertext

Any value of the encrypted message is a function of n values of
the plaintext and one column of the encryption matrix A

Two or more same values of the encrypted message does not
represent the same letter in the plaintext.

No information is revealed by observation

Result of the Cryptanalysis: Secure

Hadamard and Plotkin ciphers are secure against ciphertext-only
attacks
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Security Comparison for Block Ciphers

Hadamard and Plotkin Ciphers

A chosen plaintext attack can break the ciphers; A key size of ≥ 128
bits provides security for brute-force attacks

3DES
A meet-in-the-middle attack provides security only for 112 bits, when
using a key of 168 bits (three 56 bit DES keys)

Blowfish
Variable key size up to 448 bits

Sources

Bruce Schneier, (1996, 2004)

Declassified documents from National Security Agency (NSA)
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Summary

Highlights
1 We constructed private-key block ciphers from combinatorial

designs (Hadamard matrices and Plotkin arrays).

2 We presented a cryptanalysis for Hadamard and Plotkin ciphers
which showed that the ciphers are secure against cryptographic
attacks in most cases.

3 We conducted a simulation of brute-force attacks for Kronecker
Plotkin ciphers, proving the security of these ciphers.

Future Work
Develop a public-key cryptosystem based on similar properties of
combinatorial designs

Consider more types of cryptographic attacks

Implement the Hadamard and Plotkin ciphers for hardware-used
cryptography purposes (i.e. Military, Intelligence Services)
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Questions - Comments

Thanks for your Attention!
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